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Abstract: Significant amounts of manure are produced in the USA; however, information
on the changes in ecosystem services related to soil biogeochemical cycling for
agroecosystems supported with organic amendments such as manure is limited. A
multi-location field study was initiated in Colorado (CO), Kansas (KS) and Kentucky (KY),
USA in loam soils to evaluate the effects of manure and tillage practices on enzyme
activities that are key to biogeochemical cycling such as f-glucosidase (C cycling),
a~galactosidase (C cycling), B-glucosaminidase (C and N cycling) and phosphomonoesterases
(P cycling). The treatments were as follows: (i) two years of beef manure applications to a
fine sandy loam at different rates (control: 0, low: 34 kg N ha™" and high: 96 kg N ha™h
and tillage practices in CO; (ii) three years of beef manure applications to a silt loam at
different rates (0, low: 67 kg N ha™' and high: 134 kg N ha™') and tillage practices in KS
and; (iii) three years of poultry and dairy manure applications to a silt loam with different
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tillage practices at the same rate (403 kg N ha™') in KY. Tillage practices (none vs.

conventional) had no effect on the enzyme activities. Principal Component Analyses (PCA)
grouped all enzyme activities with the high beef manure application rate after the first year
in CO at 05 cm. By the second year, the low and high beef manure rates differed in
enzyme activities for the KS soil with no difference between the low rate and control in CO.
Since the first year of the KY study, acid phosphatase activity was greater in the poultry

treated soil compared to dairy or the control; whereas, C cycling enzyme activities were

similar in soil treated with dairy or poultry manure. For all studies, PCAs for soil samples
from 5-10 cm depth did not reveal treatment separation until the second year, i.e., only

high application rate differed from the other treatments. Results of the study indicated
significant responses in C and P cycling enzyme activities to manure applications within
two years, suggesting potential benefits to soil biogeochemical cycling essential for the
productivity of agroecosystems supported with organic fertilizers.

Keywords: broiler litter; poultry manure; dairy manure; beef manure; corn; tillage;
enzyme activities; biogeochemical cycling; soil quality

1. Introduction

Across the USA, some farmlands have lost a portion of its topsoil through wind and water erosion
induced by decades of intensive cultivation. Several studies have shown that soil degradation is a
result of soil organic matter (SOM) lost through increased soil disturbance and decomposition [1,2].
Decreases in SOM can alter the soil microbial ecology, nutrient cycling and other soil properties
leading to decreases in soil quality and thus productivity. Applying organic amendments, such as
manure, to agroecosystems as the nutrient source is a management practice that can increase SOM and
improve the nutrient status of the soil [3,4]; however, different types and rates of manure application
can have a different impact on soil biogeochemical cycling and SOM dynamics within the initial years
depending on soil type and climatic conditions. Positive influence of manure applications occur due to
the changes in soil microbial communities [5], strongly affecting the soil’s potential for enzyme-mediated
substrate catalysis [6] that control soil nutrient availability and SOM quality and quantity. Therefore,
the assessment of enzymes involved in C, N, and P cycling may provide an indication of the substrate
quality applied with various type of manure, as they are substrate-specific, and of the changes in soil
biogeochemical cycling.

The glycosidases are a group of C cycling enzymes that should be investigated as a function
of manure applications as they play a key role in the breakdown of low molecular weight of
carbohydrates producing sugars; the main source of energy for soil microorganisms. The B-glucosidase
activity, the most predominant glycosidase in soil, is involved in the last limiting step of cellulose
degradation. The a-galactosidase, also known as melibiase, catalyzes the disaccharides hydrolysis,
a-D-galactopyranosides, in soils. The B-glucosaminidase is a key enzyme involved in the hydrolysis of
N-acetyl-B-D-glucosamine residues from the terminal non-reducing ends of chitooligosaccharides [7].
The N-acetyl-B-D-glucosamine hydrolysis considered to be important for soil C and N cycling due to
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its role in converting chitin to amino sugars, a major source of easily mineralizable C and N in humid
soils [8]. The B-glucosaminidase activity has been positively correlated with cumulative N mineralized
in soils [8,9], microbial biomass C and N, and with fungal populations, as indicated by a fungal
fatty acid indicator, e.g., 18:2w6¢ [10]. In addition to C and N cycling, P is also critical for soil
biogeochemical cycling and P is the second-most limiting nutrient after N in agricultural production.
However, information on the effects of different types of manures in soil P cycling enzymes, ie.,
phosphomonoesterases, that catalyze the hydrolysis of a variety of P sources important in plant
nutrition is scarce [11].

To increase our understanding of biogeochemical cycling and of SOM dynamics in agricultural
eroded land managed with manure, we need to investigate enzyme activities across different management
practices and weather patterns. Therefore, we evaluated the enzyme activities of p-glucosidase,
a-galactosidase, PB-glucosaminidase and phosphomonoesterases (acid or alkaline phosphatase), as
influenced by conventional and no-tillage and by manure type and rates of applications compared to
non-treated soil (or treated with commercial fertilizer) in field plots with loam soils in three USA
States: CO, KS and KY.

2. Materials and Methods

This study was conducted in loam soils across the States of CO, KS and KY, USA. The three
study-sites had no previous history of manure application. The rates of manure application for these
studies were selected based on conventional commercial fertilizer associated with each crop at each
location used by producers. The manure was applied every year on the basis of the manure’s organic N
content. At CO and KY sites, conducted in USDA-ARS research farms, the manure was provided by
the nearby commercial feedlot (less than 10 km). At KS site, the manure was provided by the animal
research unit located at the same research center where the experiment was conducted (Agricultural
Research Center in Hays KS). At each site, the experimental design was a randomized split-plot with
three replications, with tillage as the main plot and the nutrient source (manure or commercial fertilizer)
as the split plot.

2.1. Colorado (CO) Study

This study started in 2006 on a Norka-Colby very fine sandy loam (fine-silty, mixed, mesic Aridic,
Argiustolls) with 3-9 % slope near Akron, CO. Tillage treatments were no-till (NT) and the
incorporation of nutrient sources with conventional tillage (CT), defined as sweep tillage at about
13 ¢m depth. Organic manure amendment (beef manure) was applied yearly at a low (34 kg N ha™")
and a high (96 kg N ha™") rate. The control treatment was represented in plots with no manure addition.
For the CT treatment, the manure was surface broadcast in the fall and incorporated within a week
after application. For the NT treatment, manure was surface applied immediately prior to planting. At
this site the crop rotation was corn (Zea mays L.) in 2006, proso millet (Panicum miliaceum 1..) in
2007, and forage winter triticale [a cereal hybrid derived by crossing wheat (Triticum sp.) with cereal
rye (Secale sp.)] in 2008. Plot size was 13.7 m wide and 15.2 m long, and the average yearly
precipitation was ~ 400 mm.
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2.2. Kansas (KS) Study

This study started in 2006 on an Armo silt loam soil (fine-loamy, mixed, mesic, Typic Haplustolls)
with 1-3% slope in Hays, KS. Tillage treatments consisted of NT and the incorporation of nutrient
sources with CT using sweep tillage at 13 cm depth. Beef manure was applied yearly at a low
(67kgNha')and a high (134 kg N ha™') rate. We also evaluated plots under inorganic fertilizer (urea)
applied yearly at the same manure N rates. The control treatment represented plots that received no
manure or fertilizer. For the CT treatments, fertilizer or manure was applied as surface broadcast and
then incorporated with the sweep tiller, while for NT treatments were surface applied. The crop
rotation used was grain sorghum (Sorghum bicolor L.) in 2006, forage oat (Avena sativa L.) in spring
of 2007, winter wheat (Triticum aestivum L.) in fall of 2007, and fallow in 2008. Plot size was 6.0 m
wide and 13.5 m long, and average precipitation was ~649 mm.

2.3. Kentucky (KY) Study

This study started in 2004 on a Crider siit loam soil (fine-silty, mixed, active, mesic, Typic
Paleudalf) with 2-6% slope in Bowling Green, KY. For the CT treatments, manure was applied as
surface broadcast and then incorporated with a rotary tiller, while for NT, treatments were surface
applied. Manure treatments consisted of a control, which received no chemical fertilizer or manure,
and two types of manure (poultry and dairy) applied at a rate of 403 kg N ha™". The plots were under
continuous corn planted in 3.05 m x 6.1 m plots in early May and harvested as grain in September.
Monthly rainfall precipitation during the course of the study was on average 140, 101, 120, 106, and
114 mm in 2004, 2005, 2006, 2007, and 2008, respectively. More information on this study, including
corn grain yields and other soil properties are given by Sistani ef al. [12].

2.4. Soil Sampling

Sites were sampled between March and April in each year and samples were obtained from the
three field replicates of each treatment. A composite soil sample consisting of ten 2.5 cm diameter
cores was taken from the (-5 and 5-10 cm depths of each treatment using an Oakfield soil probe
(Forestry Supplies, Inc. Jackson, MS). Samples were collected between the rows from each plot and
wheel-traffic areas were purposely avoided. Soil samples were placed in sterile polypropylene bags
kept in coolers during field sampling and stored at 4 °C after collection.

2.5. Soil and Manure Analyses

Soil (<5 mm) and manure pH were evaluated in air-dried samples using a glass electrode with a 1:1
soil or manure:water ratio. Soil was analyzed for organic C and total N whereas manure was analyzed
for total C and N contents by using a Vario Max CN analyzer (Elementar Americas, Inc., Mt. Laurel,
NJ, USA). Total P was analyzed in the manure using the Mehlich-3 (M3) extractant [13]. The general
properties of the manure used in these studies are provided in Table 1.
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Table 1. Selected properties of the manure applied to the field studies.

Field Study  Manure Application Crop Moisture TC TN TP pH
Year  Season % (g ke™y
Colorado Beef 2006 Fall Com 303 3676 329 48 62

2007 Fall Proso Millet 398 3645 136 50 8.1

Microbial biomass C (MBC) was determined in field-moist soil (15-g oven-dry equivalent) by the
chloroform-fumigation-extraction method [14] using a kEC factor of 0.45 [15]. The organic C from the
fumigated (24 h) and non-fumigated (control) soil was quantified using a CN analyzer (Shimadzu
Model TOC-V/CPH-TN, Shimadzu Corporation, Japan).

Enzyme activities were determined in soil based on assays described in Tabatabai [16] for
determination of the activities of B-glucosidase, a-galactosidase, and phosphomonoesterases; whereas,
B-glucosaminidase activity was determined as described in Parham and Deng [7]. The enzyme
activities were assayed (<5 mm air-dried soil) in duplicates at their optimal pH values and appropriate
substrate (all are p-nitrophenol derivates releasing p-nitrophenol or PN). The controls were soil
samples to which substrate was added after the incubation step.

2.6. Statistical Analyses

Analysis of Variance (ANOVA) was conducted to examine the effects of tillage, manure type or
manure application rate (the manure treatment varied among sites) and their interaction on the enzyme
activity. Generally, the tillage practices were not significant. Enzyme activity for every year and soil
depth was evaluated using the R statistical software [17] with the Vegan package for Principal
Component Analysis (PCA) [18]. We evaluated the enzyme activities by both PCA and model-based
redundancy analysis (RDA) [19,20], and both provided similar results. Therefore, results for the
enzyme activities were presented in PCA plots. PCA plots of the correlation matrix were obtained for
each year and depth, with a 95% confidence for the enzyme activity, to determine separation due to
manure treatment regardless of tillage.
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3. Results

Results showed that tillage treatment had no significant effects on enzyme activities within the first
years of manure applications. Thus, for each soil at the three sites (CO, KS and KY), the value of the
enzyme activities reported is an average of both tillage and no-tillage practices.

3.1. Soil Enzyme Activities as a Function of Beef Manure Application Rates in CO

For the 0—5 cm soil depth, PCA plots including 5 enzyme activities indicated separation of the high
application rate from the control and low application rate after the first year of beef manure application
(Figure 1). The PCA plot for the second year of beef manure applications showed a trend of separation
between the control and low manure application treatment, which is more obvious when comparing the
PCA plots of the first and second year.

Figure 1. Enzyme activities as affected by beef manure applications for the 0—5 cm
depth in a fine sandy loam in Colorado (CO) (B-Gluc = P-Glucosidase;
Acid Ph = Acid Phosphatase; Alk Ph = Alkaline phosphatase; a-Gal = a-Galactosidase;
B-Glsm = B-Glucosaminidase).
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Individual evaluation of each enzyme activity after the first year of the beef manure application
indicated that B-glucosaminidase and a-galactosidase activities were the most responsive enzymes 10
the high application rate, which were about 3 times greater than the control (Table 2). Afier 2 years, only
acid phosphatase activity was different among the three manure application rates (control< low < high),
while the other enzyme activities were not different in the low application rate and the control.

The PCA plots for 510 c¢m soil depth did not show separation due to the beef manure application
rates until the second year of the study, when all enzyme activities grouped near the high manure
application rate along PC1 (Figure 2). The enzyme activities were generally between 20-58% greater
in the high application rate than the control by the second year of the study at this lower soil depth
(Table 2).
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Figure 2. Enzyme activities as affected by second year of manure applications at the
5-10 cm depth in CO (B-Gluc = PB-Glucosidase; Acid Ph = Acid Phosphatase;
Alk Ph = Alkaline phosphatase; a-Gal = a-Galactosidase; B-Glsm = B-Glucosaminidase).
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Table 2. Enzyme activities in a fine sandy loam as a function of beef manure application
rates in CO ©.
Enzyme Adtivities 0-Scm 5-10 cm
(mg PN kg™’ soil h™") Year Control Low High Control Low High
Acid Phosphatase Initial 5998 a 59.18 a 65.37a 60.66 a 5837a 648la
Ist year 62.06b 76.09b 12331 a 65.07 a 66.96 a 70.17a
2ndyear  63.52¢ 81.20b 142532 49.79 b 56.54b  78.38a
Alkaline Phosphatase Initial 19695a 20591a 18346a 17435 a 17895a 16142a
Istyear 208.19b 24298b 357.70a 18591 a 184.15a 16964 a
2ndyear 219.50b 268.62b 38577 a 15927b 169.80ab 19980 a
a~Galactosidase Initial i5.25a 1193 a i525a 8.17a 7.07a 862a
Ist year 11.52b 1494 b 3434a 567a 527a 653 a
2nd year 958b 14.00b 16.51a 3.19b 3.29b 7.67a
B-Glucosidase Initial 8488 a 91.28a 9224a 71.03 a 5531a 66.13a
Ist year 97.28b 107.58b 19531 a 6128 a 56.80 a 64222
2ndyear - 8821b - 1172tab -143.38a 3941 b 41.38b  68.60a
B-Glucosaminidase Initial 16.83 a 15.54 a 18.56 a 15.18 a 1426 a 16.62 a
Ist year 14.29b 18.06 b 5195a 14.16 a 13.60 a 1507 a
2ndyear  14.09b  2526b 7792a 11.59b 1201b  1934a

' Different letters for each enzyme activity at the same depth and year indicate significant

differences (P < 0.05). Values include both tillage treatments (n = 6), which were not significant.
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3.2. Soil Enzyme Activities as a Function of Beef Manure Application Rates in KS

The PCA plots for four enzyme activities at 0—5 c¢m soil depth revealed no separation of the low
and high beef manure application rates from the control after the first year (Figure 3). However,
a-galactosidase and B-glucosaminidase activities were more associated with the high application rate,
which may explain that the high application rate treatment was already grouping by itself along axis 1.
By the second and third year of beef manure applications, the PCA plots showed that all enzyme
activities were associated to both low and high beef manure application rates.

Figure 3. Enzyme activities as affected by the first years of beef manure applications for
the 0-5 cm depth in a silt loam in Kansas (KS).
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Although all enzyme activities were increased by beef manure by the second year, individual
evaluation of the enzyme activity levels showed that B-glucosaminidase activity was doubled in soil
under the low and high application rates compared to the control (Table 3). By the third year of beef
manure applications, p-glucosaminidase and a-galactosidase showed 37 to 43% greater activities in the
manure treated soil while alkaline phosphatase activity was only 22% greater in the beef manure
treated soil compared to the control. Although an inorganic fertilized treatment, also evaluated here,
was not included in the PCAs, results (Table 3) showed that the soil enzyme activities were similar in
the inorganic fertilized plots and the control.
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The PCA plots for all enzyme activities at 5-10 cm did not show separation among the beef manure
application rates, except for a trend detected in the second year of applications (Figure 4). Most
enzyme activities were not responsive to the beef manure applications at this lower depth, and there
were only greater activities of alkaline phosphatase and B-glucosidase in the high application rate
compared to the control in the second year of applications (Table 3).

Figure 4. Enzyme activities at the 5-10 cm as affected by second year of manure applications
in KS (B-Gluc = B-Glucosidase; Acid Ph = Acid Phosphatase; Alk Ph = Alkaline
phosphatase; o-Gal = a-Galactosidase; B-Glsm = B-Glucosaminidase).
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3.3. Soil Enzyme Activities as a Function of Dairy and Poultry Manure in KY

The PCA plots for four enzyme activities together at 0~5 cm soil depth showed separation of both
dairy and poultry manure treatments from the control since the first year, and the separation among
treatments became more apparent over time (Figure 5). Greater acid phosphatase activity was
associated with the poultry treated soil; whereas, C cycling enzyme activities, i.e., §-glucosaminidase
and B-glucosidase, were similar in the dairy and poultry treated soil (Table 4).

The PCA plots that included together the four enzyme activities at 5~10 c¢m soil depth did not show
separation due to dairy or poultry manure applications until the second and third year (Figure 6). More
significant differences in the enzyme activities among treatments were detected in the third year, but
acid phosphatase activity was never affected at this lower soil depth (Table 4).
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PC 2. 26.9%

Figure 5. Enzyme activities after the first years of poultry or dairy manure applications for
the 0-5 cm depth in a silt loam soil in Kentucky (KY).
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Figure 6. Enzyme activities as affected by poultry or dairy manure applications in a silt
loam soil at 510 cm depth in KY.
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Table 4. Enzyme activities in a silt loam as a function of different manure types in KY .
Enzyme Activities 0-5cm S o e = 3 [ =
(mg PN kg'soilh™)  Year  Comtrol  Dairy  Poultry Control  Dairy  Poultry
Acid Phosphatase Initial  32122a 31267a 31085a nd* nd nd
Istyear 282.11ab 277.85b 30823a 179.62a 170.13a 17221a
2ndyear 34131b 330.13b 40546a 22906a 210.79a 208.28a
3rdyear 303.88b 310.11b 392764 189.83a 19090a 18231a
a-Galactosidase Initial 13.12b 2608a 27.29a nd nd nd
Istyear 23.07b  30.55b 4829a 840b 9.69ab  12.15a
2ndyear 3597b 56.808 6545a 23.10b 25.70ab 28.17a
3rdyear 18.01Db 43.17a 40.18a 521c 845b 12.14a
B-Glucosidase Initial 14522b 15857ab 19133 a nd nd nd
Istyear 151.95b 222.14a 237.10a 72.30b 75.13b 9566a
2nd year 182506308 14a - 31635a 7830b 10343a 113362
Jrdyear 15443b 27299a 28101a 57.76b 8687a 89.32a
B-Glucosaminidase Initial 33.07b 46.50a 4585a nd nd nd
Istyear 44.53b 62852 66.73 a - 2445a 2555a 27.10a
2nd year 41.93b 64.94 a 67.87 a 2394 a 28.55a 2571 a
Jrdyear 334l¢ 7477a 61.46Db 20.01 b 2397a 22.18ab .

' Different letters for each enzyme activity at the same depth and year indicate significant
differences (P < 0.05). Values include both tillage treatments (n = 6), which were not significant;

* Nd = not determined.

3.4. Additional Soil Properties in the Three Sites at the End of the Studies

The studies showed that soil pH decreased from 6.8 to 6.5 by the poultry manure applications at
both soil depths in KY (Table 5). For the CO study, soil microbial biomass C (MBC), soil organic C
(SOC) and total N (TN) were only greater in the high beef manure application rate at 05 cm, but there
were no differences in these soil properties at 5-10 cm. For the KS study, MBC and TN were greater
under low and high beef manure application rates compared to the control for the 0-5 cm, which is
similar to the trends of enzyme activities; whereas, SOC was only significantly different in the high
beef manure application rate compared to the control. At 5-10 cm depth in KS, only MBC was greater
in the high beef manure application rate compared to the control. In the KY soil, MBC, SOC and TN
were greater due to dairy and poultry manure compared to the control at 0—5 cm, which was also found for

the C cycling enzyme activities.
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Table 5. Additional soil properties evaluated in the last year of the field studies
corresponding to year 2 in CO and year 3 in KS and KY ©.

g : Different manure
Beel manure applied at different rates
at same rate

Colorado study Kansas study Rentucky study
S e mandyieesm) | o Ry 0 )T
Properties* Contrel  Low High Control  Low High Control  Dairy  Poultry
05 cm
MBC 2473b 2672b 376.6a 3009b 42992 439.2a 299.5b 526.0a 4395a
Organic C 95b 1125  14.5a 1480 16.5ab 17.7a 15.0¢ 27.9a  223b
Total N 1.1b 1.3b 17a 1.5b l16a 1.7a 16b 27a 24a
Soil pH 79a 80a 78a 83a 83a 8.1a 6.8a 68a 65b
5-10 cm ‘
MBC 1683a 177.0a 2023a 240.7b  260.5ab 2823a 1419a 160.1a 1669a
Organic C 8.7a 8.7a 95a 13.6a 133a 145a 9.6 b 11.6a 11.3a
Total N l.1a I.1a 1.2a 14a l4a 14a 12b 1.3a 1.3a
SoilpH 81a 80a 77s  85a 84a 83a  68ab 69a 66b

" Within the same field study, different letters for each property at the same depth indicate significant
differences (P < 0.05). Means reported includes both tillage treatments (n = 6), which were not significant;
* The units for the soil properties are: MBC = mg C kg ™' soil; Organic C =g C kg’ soil; Total N = g N kg " soil.

4. Discussion
4.1. Soil Enzyme Activities as a Function of Beef Manure Application Rates in CO and KS

Significant increases in soil microbial communities and their enzyme activities can be expected
under long-term manure applications [21-23]; however, the early assessment conducted with CO and
KS studies revealed different responses of the soil enzyme activities depending on the climatic
conditions and soil type. For example, there was a faster increase in all soil enzyme activities under the
high rate of application in CO possibly related to the sandy nature of the soil (fine sandy loam) with
lower SOM and clay contents compared to the silt loam soil in KS, which did not show the separation
of all enzyme activities until the second year. In addition to differences in SOM levels in the KS and
CO soils, there could also be differences in SOM quality, indicating a different microbial community
and production of enzymes within the first year in the sandier soil in CO compared to the KS soil.
Although all enzyme activities responded faster in the sandier soil in CO, individual evaluation of each
enzyme revealed that for the KS soil, two of four enzyme activities (a-galactosidase and
B-glucosaminidase) were greater in the high beef manure application rate compared to the
control after the first year. In this sense, both CO and KS studies showed that C cycling enzyme
activities were more responsive to beef manure than the P cycling enzyme activities evaluated
(phosphomonoesterases) after the first year. This finding reflects that high C levels are provided in
beef manure and influence C cycling enzyme activities regardless of the study and soil type (compared
to the poultry and dairy manure used in the KY study).
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4.2. Soil Enzyme Activities as a Function of Manure Types in KY

Evaluation of the effects of different manure types on enzyme activities in the KY silt loam soil
showed increases in specific soil enzyme activities by certain manure types. The fact that acid
phosphatase activity was more associated with soil under poultry manure than with dairy manure could
be related to the lower pH in poultry (pH < 7) vs. dairy (pH > 7) manure. The low pH in added poultry
manure caused a decrease in soil pH and subsequently an increase in acid phosphatase activity.
Increases in acid phosphatase activity are generally observed with decreases in soil pH, within a given
range [24]. Parham er ol [21] explained that the observed effect of soil pH on acid phosphatase
activity could be due to modifications in the quantity, specific activity, or stability of the enzymes with
changes in soil pH. In addition to soil pH, previous studies have emphasized the high levels of P
incorporated by poultry manure increasing the mobility of manure-P in soil with time due to significant
increases in P cycling enzyme activities and microbial diversity {21,25]. Therefore, the fast increase in
acid phosphatase activity in this soil with poultry manure may indicate improvements to P cycling. In
addition, previous results from the same study (KY) indicated that poultry manure applied as a primary
fertilizer at the rate of 13.5 Mg ha™' during four years did not result in residual soil test P, Cu and Zn
levels considered to be harmful to surface water or cropping systems. However, corn grain yields were
still similar to those yields from inorganic fertilization under both no-till and tilled conditions [12].

Greater acid phosphatase activity was found in poultry manure than in dairy manure treated soil
whereas C cycling enzyme activities involved in chitin (B-glucosaminidase), cellulose (B-glucosidase)
and melibiose (a-galactosidase) degradation were similar in soil treated with dairy manure and the soil
under poultry manure. Since total C content was greater in poultry manure (200-265 g kg‘l) than dairy
manure (88—196 g kg™"), it could have been expected to detect greater C enzyme activities in soil
under poultry manure, but this was not the case. Therefore, the C cycling enzyme activities may have
responded to differences in substrates C quality than in C quantity between poultry and dairy manure.
A recent study by Tejada er al. [26] with new types of organic amendments (i.e., biostimulants)
emphasized the effect of substrate C-quality differences in their impact on soil enzyme activities and
community structure. They reported that the soil enzyme activities were increased to greater extent by
biostimulants with greater amounts of protein and percentage of peptides [26]. In our study, MBC was
numerically greater (17%) in the surface soil (0—5 cm) under dairy rather than in the poultry manure
treated soil, which may suggest that dairy manure contained more simple C sources and/or a different
(perhaps greater) microbial community. The C cycling enzymes may have also responded to the fact
that dairy manure tended to have higher pH and greater water (up to 2 fold) than poultry manure. In
addition, Sistani et al. [12] reported lower Cu and Zn contents in the dairy manure (by half) than in
poultry manure used in this study. The Cu and Zn are metals that are known to have inhibitory effects
on these C cycling enzymes [27] and thus, may have caused some reductions in these enzyme activities
of poultry manure treated soil. Overall, manure properties, regardless of C content, could explain the
similar levels of C cycling enzyme activities in the dairy manure and the poultry manure treated soils.
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4.3. Relationship between Changes in Soil Enzyme Activities and Other Soil Properties

Results from the KS study demonstrate more benefits to biogeochemical cycling with organic
amendments compared to inorganic fertilizers as the soil enzyme activities were similar in the
inorganic fertilizer and control plots within these first years of plot establishment. In addition, the three
studies regardless of soil and manure type, showed the same trend for soil microbial biomass C and the
C cycling enzyme activities suggesting these enzymes had significant origin from active microbial
communities in the manure and/or those increased in soil due to the additional readily available
substrates associated to the manure [28,29]. These findings show that organic fertilizers, such as
manure, not only provide additional enzymes, microbes and nutrients that are not provided with
inorganic fertilizers, but also a better environment to support further increases in soil microbial
communities and stabilize soil enzymes, such as the reductions in soil compaction [30,31] and
improved SOM and porosity [32].

Our samplings every year between March and April showed generally similar levels of enzyme
activities under the same treatment as reported for another study in TX with organic amendments (i.e.,
poultry manure) [5], however, the levels of the enzyme activities can vary when soils treated with
manure are sampled at different times [21]. The use of PCA plots to visualize the response of several
enzyme activities in this study was a valuable tool that revealed a gradual progressive separation of the
manure treated soils from the control soil over time, which was not possible to be observed from the
individual evaluation of each enzyme activity level.

Previous long-term studies in other loam soils have reported that the impact of manure applications
on enzyme activities and microbial biomass are detected in the 0~30 ¢m soil layer [21]. Similar to our
study with enzyme activities, less marked effects of manure applications were detected by a long-term
study (12 yrs) on the microbial diversity with depth [33]. However, information on how long does it
take for soil enzyme activities to be affected with the applications of organic amendments is scarce.
Results from our field studies indicated that the enzyme activity responses were not detected until the
second year of manure applications at lower soil depths (5-10 cm) regardless of manure type and rate,
tillage practice, and soil type. However, enzyme activities showed a faster response to manure
applications at this lower depth compared to SOC content, which was still not affected due to beef
manure in CO and KS studies. The less marked effects of manure applications on the enzyme activities
with depth are explained by the decrease in SOM, nutrients and microbial community composition and
activity with soil depth, which can reduce manure decomposition and substrates incorporation into
nutrient cycling within the first years of applications.

5. Conclusions

This muiti-location research showed that the sandier soil (fine sandy loam) responded faster to the
beef manure application in CO rather than the silt loam soil evaluated in KS. Both studies in CO and
KS showed that C cycling enzyme activities were more responsive than phosphatase activity to beef
manure, which could be in response to the high levels of total C in beef manure, compared to the
poultry and dairy manure used in KY. Also, results from the silt loam under different manure types in
KY revealed that certain enzyme activities might be more predominant under certain types of manure
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and thus, impacting different biochemical reactions of nutrient cycling. The poultry manure had higher
P and C content than the dairy manure; however, acid phosphatase activity was increased with soil
treated with poultry manure whereas C cycling enzyme activities were similar under both the dairy
manure and poultry manure treated soil. This study revealed significant responses in C and P cycling
enzyme activities to manure applications within 1--2 years at a depth to 10 cm, representing potential
benefits in soil biogeochemical cycling, considered essential for the sustainability of agroecosystems
supported with organic fertilizers.
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